Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons
نویسندگان
چکیده
Using high resolution capacitance measurements, we have characterized an ultrafast component of transmitter release in ribbon-type synaptic terminals of retinal bipolar neurons. During depolarization, capacitance increases to a plateau of approximately 30 fF with a time constant of approximately 1.5 ms. When not limited by activation kinetics of calcium current, the small pool is depleted even faster, with a time constant of 0.5 ms. After the ultrafast pool is depleted, capacitance rises with a slower time constant of approximately 300 ms. EGTA (5 mM) depresses the slower capacitance rise but leaves the ultrafast phase intact. BAPTA (5 mM) depresses both components of exocytosis. With paired-pulse stimulation, the ultrafast pool recovers from depletion with a time constant of approximately 4 s. The ultrafast component may represent fusion of docked vesicles at the base of the synaptic ribbon, while the slower component represents more distal vesicles on the ribbon.
منابع مشابه
Synaptic mechanisms of bipolar cell terminals
Giant synaptic terminals of goldfish bipolar neurons allow direct studies of presynaptic mechanisms underlying neurotransmitter release and its modulation. Calcium influx via L-type calcium channels of the terminal triggers synaptic vesicle exocytosis, which can be monitored in isolated terminals by means of the associated changes in membrane capacitance. Information about the kinetics and calc...
متن کاملDepletion and replenishment of vesicle pools at a ribbon-type synaptic terminal.
Synaptic depression was studied using capacitance measurements in synaptic terminals of retinal bipolar neurons. Single 250 msec depolarizations evoked saturating capacitance responses averaging approximately 150 fF, whereas trains of 250 msec depolarizations produced plateau capacitance increases of approximately 300 fF. Both types of stimuli were followed by pronounced synaptic depression, wh...
متن کاملThe ribbon-associated protein C-terminal-binding protein 1 is not essential for the structure and function of retinal ribbon synapses
PURPOSE Synaptic ribbons are organelles found at presynaptic active zones of sensory neurons that generate sustained graded electrical signals in response to stimuli, including retinal photoreceptor cells and bipolar neurons. RIBEYE is the major and specific protein constituent of ribbons; however, over the past decade an increasing number of other proteins have been identified at ribbon active...
متن کاملCalcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons.
Giant synaptic terminals (approximately 10 micrometer diameter) of bipolar neurons from goldfish retina were used to directly investigate calcium-dependent inactivation of presynaptic calcium current. During sustained depolarization, calcium current was initially constant for a period lasting up to several hundred milliseconds and then it declined exponentially. The duration of the initial dela...
متن کاملSyntaxin 3B is essential for the exocytosis of synaptic vesicles in ribbon synapses of the retina.
Ribbon synapses of the vertebrate retina are specialized synapses that release neurotransmitter by synaptic vesicle exocytosis in a manner that is proportional to the level of depolarization of the cell. This release property is different from conventional neurons, in which the release of neurotransmitter occurs as a short-lived burst triggered by an action potential. Synaptic vesicle exocytosi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 17 شماره
صفحات -
تاریخ انتشار 1996